
www.manaraa.com

1

To appear in the IEEE Journal on Selected Areas in Communication, Special Issue on High Definition
Television and Digital Video Communication, Vol. 11, No. 1, January 1993

Designing a Multi-User HDTV Storage Server

Harrick M. Vin and P. Venkat Rangan

Multimedia Laboratory
Depaartment of Computer Science and Engineering

University of California at San Diego
La Jolla, CA 92093

E-mail: fvin,venkatg@cs.ucsd.edu, Phone: (619) 534-5419, Fax: (619) 534-7029

Abstract

Future advances in networking coupled with the rapid advances in storage technologies will make it feasible
to build a HDTV-on-demand server (that provides services similar to those of a neighborhood videotape rental
store) on a metropolitan-area network. In this paper, we present a quantitative study of designing a multi-user
HDTV server, and present efficient techniques for (1) storing multiple HDTV videos on disk, and (2) servicing
multiple subscriber requests simultaneously, both under the constraint of guaranteeing HDTV playback rates.

We develop a model that relates disk and device characteristics to the HDTV playback rate, and derive a
storage pattern for HDTV video streams that guarantees their real-time retrieval. Given multiple HDTV streams,
we develop mechanisms for merging their individual storage patterns together. We propose an off-line merging
algorithm that can be applied a priori, and an on-line algorithm suitable for merging a new HDTV stream into a
set of already stored HDTV streams, both of which yield a large improvement in space utilization over storing
each of the streams independently. We study various policies, such as, round robin and quality proportional
for servicing multiple subscribers simultaneously. The quality proportional algorithm retrieves video frames
at a rate proportional on an average to the HDTV playback rates of subscribers, but uses a staggered toggling
technique in which successive numbers of retrieved frames are fine tuned individually to achieve the servicing of
an optimal number of subscribers simultaneously. The algorithm is powerful enough to accommodate bounded
availability of HDTV display buffers, and permits dynamic additions and deletions of subscriber requests in a
transparent manner (i.e., without causing discontinuity in the retrieval of any of the existing subscribers). In
summary, our studies provide a quantitative demonstration of the technological feasibility and economic viability
of HDTV-on-demand servers on metropolitan area networks.

1 Introduction

Recent developments in networking coupled with the advent of high capacity storage devices will make it feasible

to support HDTV-on-demand servers over metropolitan-area networks, such as B-ISDN, that are expected to

permeate residential and commercial premises in a manner similar to existing cable TV or telephone networks

[10, 11]. A HDTV-on-demand storage server, which we will refer to as a HDTV server in the rest of this paper,

provides services similar to those of a neighborhood videotape rental store. It digitally stores HDTV video such

as entertainment movies, educational documentaries, advertisements, etc., on a large array of extremely high-

capacity storage devices such as optical or magnetic disks, that are random accessible with a short seek time, and

www.manaraa.com

2

are permanently on-line. The HDTV server is connected to display devices (such as TVs) belonging to residential

subscribers via a high-speed metropolitan area network (see Figure 1). Subscribers can make a selection of a

video through a variety of indices such as the video’s subject title, and request its retrieval for real-time playback

on their display devices. The HDTV server, if it has the necessary resources (such as service time and buffer

space), satisfies the subscriber’s request by connecting to his/her chosen display device(s), and transmitting the

chosen video segment. The retrieval is interactive, in the sense that subscribers can stop, pause, resume, and even

record1 and edit the video if they have permissions to do so. Thus, a HDTV server also subsumes the functions

of VCRs, video tapes, audio recorders, etc., and can serve varying sizes of clientele: from individual households

to entire neighborhoods, and from commercial organizations and educational institutions to national services.

HDTV-on-demand
Server

Metropolitan Area
Metwork (MAN)

Display
Device

Display
Device

Display
Device

Display
Device

Display
Device

Display
Device

Display
Device

Figure 1: Configuration of a large scale HDTV-on-demand server

The above architectural visionof a HDTV server is feasible within the next several years (rather than decades).

To see why, consider the storage and transmission capacities required for a HDTV server. Assuming HDTV video

to require a data rate of about 2 Mbytes/s [3], a 100 minute long movie requires 12 Gbytes. Storage of 1000

such videos requires a capacity of 12 terabytes. In comparison, the capacity of currently available disks are 10

GBytes, and are expected to increase to 100 Gbytes in a few years. Thus, with an array of 120 disks, a HDTV

server can store 1000 popular movies simultaneously. As for the transmission capacities, fiber-optic networks

offering gigabyte bandwidths are already in place, and those offering terabyte bandwidths are conjectured to be

only a few years away. However, a key deciding factor for the feasibility of such a HDTV server is its economic

1Throughout this paper, we will use the terms playback and retrieval, as well as recording and storage synonymously.

www.manaraa.com

3

viability. Assuming costs of about $ 4,000 per disk, the total expected installation cost of a HDTV server will

be $ 0.48 million, which when amortized over 1000 subscribers is about $ 480 per subscriber, making it a viable

alternative to owning a VCR. The design of a high-performance storage server that can satisfy a large number of

HDTV-on-demand retrievals from multiple users simultaneously is the subject matter of this paper.

There are two important questions that need to be addressed in designing such a multi-subscriber HDTV

server2: (1) how should multiple HDTV videos be laid out on disk storage, and (2) how can multiple retrieval

requests from multiple subscribers be serviced simultaneously by the same HDTV server? These two problems are

inter-related: the storage pattern of a video (i.e., the relative positions of successive stored blocks of digitized data

comprising the video) governs the rate at which each individual video can be retrieved, which must equal at least

the HDTV playback rate even when the server is multiplexing itself among multiple subscribers simultaneously.

In this paper, we present a quantitative study of designing a multi-user HDTV server. We present algorithms

for (1) collocational storage of maximum number of HDTV videos on disk, and (2) simultaneous servicing of

maximum number of subscribers’ requests. We develop a model that relates disk and device characteristics to the

HDTV playback rate, and derive a storage pattern for HDTV videos that guarantees their real-time retrieval. To

maximize the storage utilization of multiple HDTV videos, we develop mechanisms for merging their individual

storage patterns together. We propose both an off-line merging algorithm that can be applied a priori to the storage

of a set of HDTV videos before any of them have been stored on disk, and an on-line algorithm suitable for

merging a new HDTV video into a set of already stored HDTV videos.

We study various policies (such as, round robin and quality proportional) for servicing multiple subscribers

simultaneously, and propose algorithms by which a HDTV server can enforce these policies without violating

the real-time retrieval rates of any of the subscribers. The quality proportional algorithm retrieves video frames

at a rate proportional on an average to the HDTV playback rates of requests, but uses a staggered toggling

technique by which successive numbers of retrieved frames are fine tuned individually to service an optimal

number of subscribers simultaneously. The algorithm is powerful enough to accommodate bounded availability

of HDTV display buffers, and permits dynamic additions and deletions of subscriber requests in a transparent

manner (i.e., without causing discontinuity in the retrieval of any of the existing subscriber requests). We evaluate

the performance of the quality proportional multi-subscriber servicing algorithm, and show that it is an order of

magnitude scalable compared to straightforward multiplexing techniques such as servicing one subscriber per disk

head and round robin servicing of subscribers.

The rest of this paper is organized as follows: In Section 2, we present HDTV storage techniques, in Section

3, we develop multi-subscriber servicing algorithms, and in Section 4, we present their performance evaluation.

Section 5 identifies related work in this area, and finally, Section 6 concludes the paper.

2Building a dedicated, single-subscriber HDTV server does not offer very many design choices, and is relatively straightforward.

www.manaraa.com

4

Symbol Explanation display unitRpl HDTV playback rate display units/secRdr Disk data transfer rate bits/secRds Disk scan rate bits/sec�vs Granularity of HDTV storage display unitssvf Size of a HDTV display unit bits/display unitlds Scattering parameter sec

Table 1: Symbols used in this paper. A display unit represents a frame for video, and a sample for audio

2 Efficient Storage of HDTV Video

Digitization of HDTV video yields a sequence of frames, and that of its accompanying audio yields a sequence

of samples. We call a sequence of continuously recorded HDTV video frames or audio samples a Strand. A

HDTV server must divide video and audio strands into blocks while storing them on a disk. Most existing storage

server architectures employ unconstrained allocation of blocks on disk. Such storage servers cannot handle HDTV

strands because, separations between blocks of a strand may not be constrained enough to guarantee bounds on

access and latency times of successive blocks of the strand. At the other end of the spectrum, contiguous allocation

of blocks of a strand can guarantee continuous access, but it is fraught with inherent problems of fragmentation

and can entail enormous copying overheads during insertions and deletions. Constrained block allocation, on the

other hand, can keep the access time within HDTV requirements without entailing the above disadvantages.

There are two questions that need to be answered in constrained allocation of blocks of a media strand:

(1) What should the size of the blocks (i.e. the granularity) be? and (2) What should the separation between

successive blocks (i.e. the scattering parameter) of a strand be? The guiding factor in determining the block size

and separation is the requirement of continuous retrieval at HDTV rates. Table 1 defines the symbols for these

parameters, using which, it can be seen that the playback duration of a HDTV block is given by �vsRpl . Retrieval at

HDTV rates requires that the total delay to read each HDTV block from disk (given by lds + �vs�svfRdr) be bounded

by the its playback duration: lds + �vs � svfRdr � �vsRpl (1)
The relative values of granularity (�vs) and the scattering parameter (lds) for each HDTV strand must satisfy

Equation (1). Since there are two parameters and one equation, one of these parameters, namely the granularitycan

be fixed based on the hardware environment and the amount of buffer space available at the display devices. Having

fixed the granularity, the upper bound on the scattering parameter, lds can be obtained by direct substitution in

Equation (1). Using the values of �vs and lds, the size of each data blockM and the separation between successive

blocks G for a HDTV strand can be derived as: M = �vs � svfG = lds � Rdr (2)

www.manaraa.com

5

The pair (M;G) defines the storage pattern of a HDTV strand, and the strand itself consists of repetitions of its

storage pattern. For example, if a HDTV video strand is digitized at 0.5 Mbits/frame and recorded at 60 frames/s

on a disk transfer rate of 1 Gbits/s, then choosing the granularity �vs to be 1 frame/block yields a scattering

parameter lds � 16:16ms, which together go to define the strand’s storage pattern (M;G) to be (0.5 Mbits, 16.16

Mbits) (see Figure 2).

M G M G M G M

M = 0.5 Mbits G = 16.16 Mbits

Figure 2: Storage pattern of a HDTV strand S = (M;G) when Rdr = Rds = 1 Gbits/s, Rpl = 60 frames/s,�vs = 1, and svf = 0:5 Mbits

2.1 Storage of Multiple HDTV Strands

A HDTV server needs to store thousands of video strands on disk. If there are sufficiently large empty regions on

the disk, each strand may be stored exactly in accordance with its storage pattern. However, storing each strand

independently entails the unusability of all the gaps in its storage pattern, resulting in an occupancy of MM+G . To

utilize the disk space much more efficiently, data blocks of a new strand may have to be stored in the gaps of

already existing strands on the disk. We refer to this process as merging. Intuitively, if we assume that the length

of strands can be unbounded, then a set of strands S1; S2; :::; Sn can be merged together if the sum of the fractions

of space occupied by data blocks of S1; S2; :::; Sn does not exceed 1:

Merge Condition: A set of HDTV strands S1; S2; :::; Sn with storage patterns (M1; G1), (M2; G2), ..., (Mn; Gn),
respectively, can be merged together only if:M1M1 +G1

+ M2M2 + G2
+ � � �+ MnMn +Gn � 1 (3)

For HDTV strands with storage pattern (0.5 Mbits, 16.16 Mbits), Equation (3) permits 32 strands to be stored

in a merged form in the space spanned by one strand.

When storing data blocks of a new HDTV strand with storage pattern (M;G) in the gaps of existing strands,

it may not be possible to maintain the storage pattern of the new strand. Since strand patterns are constructed so as

to exactly satisfy real-time retrieval rates of HDTV, nonconformance with a strand pattern can result in violation

of HDTV rate requirements during retrieval. Such a violation can be avoided by introducing finite buffering

between the HDTV server and the display device, and prefetching a finite number of data blocks of the merged

strand and storing them in memory buffers before initiating its playback. This is feasible only if the relative ratio

of the number of data blocks and gaps for the merged strand is maintained to equal MG at least on an average over

a finite length, in which case, buffering can nullify the effects of jitter in the pattern, and result in the relaxation of

the condition for retrieval at HDTV rates. The exact prefetch and buffering requirements depend on the placement

of the new strand’s data blocks in the gaps of the strands already stored on the disk.

www.manaraa.com

6

We now propose placement strategies for a strand to be merged so as to guarantee its retrieval at HDTV rates

even after merger, while at the same time minimizing the accompanying prefetch and buffering requirements.

Consider two HDTV strands S1 and S2 with storage patterns (M1; G1) and (M2; G2), respectively3. Let S1 be

laid out on the disk in accordance with its storage pattern. Merging S2’s pattern into that of S1 is straight-forward

if G1 = M2 and M1 = G2, in which case, each data block of S2 will exactly fit into a gap of S1. However, this

can be very restrictive. In general, if the merge condition (Equation (3)) is satisfied, a simple derivation yields

that over a length L = LCM (M1 + G1;M2 + G2), the data blocks of strand S2 are guaranteed to fit in the gaps

of S1. That is, if there are p1 patterns of S1 and p2 patterns of S2 that can span a length L, then:p2 �M2 � p1 �G1

where, p1 = LM1+G1
and p2 = LM2+G2

. After the merger, L represents the length of a cycle over which S2’s merged

pattern repeats. Since the number of data blocks of S2 in a merge cycle L is the same as the number of blocks ofS2 in its unmerged pattern of length L (see Figure 3(b)), and since retrieval at HDTV rates is guaranteed for the

unmerged pattern, playback of S2’s merged pattern at HDTV rates can be guaranteed over an average of lengthL. Specifically, prefetching all of the data blocks (p2 in number) of S2 within the first merge cycle, and initiating

playback just after beginning the transfer of the next set of p2 blocks from the second merge cycle, guarantees thatS2’s playback proceeds continuously at its HDTV rate.

M2 = 4 G2 = 8

G1 = 6M1=2

1,2

1,2

S

S
1,2

1,2

(a)

(b)

(c)

(d)

S

S

S = merge (S , S) using Greedy Placement Strategy

S = merge (S , S) using Uniform Placement Strategy

1

2

1 2

1 2

Merge Cycle L = LCM (M1+G1, M2+G2) = 24

p1 = 3 p2 = 2

Figure 3: Merging the storage of strands S1 = (M1; G1) and S2 = (M2; G2)
Under these conditions, the simplest approach to place S2’s data blocks is to fill S1’s gaps continuously

starting from the very first gap, yielding a greedy placement policy (see Figure 3(c)). After storing the blocks (p2

in number) belonging to each merge cycle, the remaining gaps up to the end of that merge cycle would be left

3Each strand may be associated with different values of M and G due to variation in the data rates, which are a result of variations in
recording rates, rates of compression, and differences in media (e.g., audio and video).

www.manaraa.com

7

free. However, if S2’s pattern is sparse compared to the empty space available in S1, then the greedy placement

policy causes a large number of data blocks of S2 to be read earlier than their time of display leading to peaks in

buffering requirements, which at HDTV data rates can be quite large. Buffering needs can be reduced if, instead,

the p2 data blocks of S2 in each merge cycle are uniformly distributed across all the gaps of S1 in that merge cycle

(see Figure 3(d)).

The above binary merging techniques can be easily extended to three or more strands. For instance, consider

the process of merging strands S1 = (M1; G1), S2 = (M2; G2), and S3 = (M3; G3). Let S1;2 be the composite

strand obtained by merging the patterns of S1 and S2 . Then, in order to merge the patterns of S3 with S1;2, we

derive the effective block size M1;2 and gap size G1;2 of the composite strand S1;2 to be:M1;2 = p1 �M1 + p2 �M2G1;2 = L1;2 �M1;2
where L1;2 = LCM(M1 + G1;M2 + G2), p1 = L1;2M1+G1

, and p2 = L1;2M2+G2
, and then repeat the binary merging

procedure for S1;2 and S3.

As more and more strands are merged together, gaps become more and more scarce, as a result of which

larger cycle lengths L are necessary for storing the data blocks of newer strands. Since the buffer space needed

increases directly with the number of blocks p2 of S2 within a merge cycle, increase in the merge cycle lengthL yields higher buffer space requirement. On the contrary, if none of the strands that need to be stored by a

HDTV server have been physically placed on the disk, the patterns of each of the strands can be determined so

as to be exactly mergeable, thereby eliminating pattern deviations for any of the strands when they are stored in

a merged form, and consequently reducing the buffer space requirements. Such an off-line merging technique, a

fitting application of which is in the placement of HDTV strands on write-once optical disks (such as, WORMs

and CLVs), is elaborated next.

2.2 Off-line Merging

Suppose that HDTV strands S1; S2; :::; Sn with storage patterns (M1; G1), (M2; G2), ..., (Mn; Gn), respectively,

are to be stored in a merged form on the disk. Let the strands be placed on disk such that p1 blocks of S1, p2

blocks of S2, ..., pn blocks of Sn follow each other, and the sequence repeats indefinitely (see Figure 4).

Merge Cycle

p1 = 2 p2 = 4 p3 = 3 p4 = 6 p5 = 9

Figure 4: Off-line merging

Guaranteeing retrieval at HDTV rates for each strand Si requires that the space occupied by blocks of all

other strands does not exceed the maximum gap space permitted by Si’s pattern for its blocks in the sequence

www.manaraa.com

8

(which is Gi for each block of size Mi, as given by Equation (2)). That is,8i 2 [1; n] :
Xj2[1;n];j 6=ipj �Mj � pi �Gi (4)

The values of p1; p2; :::; pn satisfying the above system of n equations define a HDTV merge cycle. We now

propose a scaled placement policy, in which the number of consecutive blocks pi of a strand Si placed in a merge

cycle is inversely scaled by its pattern length (i.e., Mi +Gi). That is, 8i 2 [1; n]:pi = pMi + Gi
where, p is a constant. The following theorem proves that the scaled placement policy will always yield a solution

if one exists, thereby showing that it is complete in its effectiveness.

Theorem 1 Whenever the merge condition (Equation (3)) is satisfied, the scaled placement policy always yields

a HDTV merge cycle.

Proof: In the scaled placement policy, the number of consecutive blocks pi of a strand Si placed in a merge cycle

is given by pi = pMi+Gi . The scaled placement policy yields a solution if Equation (4), which reduces to:8j 2 [1; n] :
Xi2[1;n];i6=j p �MiMi +Gi � p �GjMj + Gj) 8j 2 [1; n] :
Xi2[1;n];i6=j MiMi + Gi � GjMj + Gj (5)

is satisfied. Substituting GjMj+Gj = 1� MjMj+Gj in Equation (5), which is surprisingly independent of p, and

rearranging terms, we get: nXi=1

MiMi + Gi � 1

which is nothing but the merge condition (Equation (3)), which goes to prove that, the scaled placement

policy yields a solution whenever the merge condition is satisfied.2
As explained in the derivation of Equation (4), for each strand Si, fetching its pi blocks within each merge

cycle is sufficient to guarantee HDTV rate retrieval for the duration of the merge cycle. Hence, no prefetch is

required to initiate playback, and a buffer space of at most pi blocks is sufficient. However, choosing a value ofp (from which the values of pi are derived) so as to satisfy the buffering constraints may result in non-integral

values for pi’s. Truncating or rounding off the real values of pi so obtained may not guarantee that Equation (4)

is satisfied, and hence may not guarantee that the retrieval of each of the merged strands proceeds at HDTV rates.

In Section 3.3, we describe a technique for toggling between bpic and dpie for each strand in a staggered manner

between successive merge cycles, so as to guarantee retrieval at HDTV data rates for each of the merged strands.

www.manaraa.com

9

3 Servicing Multiple Subscribers Simultaneously

Till now, we have investigated techniques for optimizing space utilization in a HDTV server. We shall now

develop techniques for optimizing the service time so as to satisfy the maximum number of subscriber requests

simultaneously in real time. In the best scenario, all the subscribers request the retrieval of the same video (for

instance, a popular movie), in which case, the HDTV server needs only to retrieve the video once from the disk

and then multicast it to all the subscribers. However, more often than not, different subscribers may request the

retrieval of different videos, or even when it is a popular movie being requested by multiple subscribers, there

may be phase shifts among their requests, i.e., each subscriber viewing a different part of the movie at the same

time. A simple mechanism to guarantee that the real-time retrieval rates of none of the requests are violated is

to dedicate each disk head to service one request. This limits the total number of simultaneous requests to the

number of disk heads, which is about 120 in the configuration proposed in Section 1, in contrast to the estimated

1000 subscribers that are needed to make the HDTV server economically viable.

In this section, we develop algorithms to support the maximum number of subscriber requests simultaneously,

under the constraint that each of their retrievals must be guaranteed to proceed at its HDTV rate. In order to

precisely formulate this requirement, let us suppose that a HDTV server is servicing n subscribers, each of whom is

retrieving his/her own HDTV strand. Let �1vs; �2vs; :::; �nvs denote the granularities of the n strands being retrieved,l1ds; l2ds; :::; lnds denote their scattering parameters, and R1pl;R2pl; :::;Rnpl their playback rates. These differences

among strands (even though each contains HDTV video) may arise due to differences in their levels of compression

and encryption (employed possibly for copyright protection), differences in frame rates, and differences in picture

quality. The HDTV server multiplexes among all the n subscribers, transferring a finite number of blocks ki of

each request i 2 [1; n], before switching to the next request. Each sequence of transfers k1; k2; :::; kn constitutes a

service round, and the HDTV server repeatedly executes service rounds until completion of the requests. Whereas

the rate of transfer of successive blocks of each request is governed by the granularity and scattering parameters

of its strand, switching from one request to another may entail an overhead of up to the maximum disk seek time

plus the maximum rotational latency, to move the disk head from a block of the first strand to a block of the second

strand (since the layout does not constrain the relative positions of two different strands). Thus, the total time

spent retrieving ki blocks of ith request in a service round can be said to consist of:

1. �1i : The overhead of switching from the previous request to the ith request, and then transferring the first

block of ith request. Since the overhead due to seek time is bounded by lmaxseek , and since the rotational

latency to access a media block placed on a track is bounded by lmaxrot , we get:) �1i = lmaxseek + lmaxrot (6)
2. �2i : The time to transfer remaining (ki � 1) blocks of this request in this service round.) �2i = ki�1Xj=1

(lids + �ivs � sivfRdr) (7)

www.manaraa.com

10

Hence, the total time spent servicing ith request in a round is�i = �1i + �2i (8)
and the total time spent servicing one round of all the n requests is given by:

Θ = nXi=1

�i = n � (lmaxseek + lmaxrot) + nXi=1

ki�1Xj=1

 lids + �ivs � sivfRdr ! (9)
The HDTV retrieval rate for each of the requests can be satisfied if and only if the service time per round

does not exceed the minimum of the playback durations of all the requests. That is,n � (lmaxseek + lmaxrot) + nXi=1

ki�1Xj=1

 lids + �ivs � sivfRdr ! � mini2[1;n]�ki � �ivsRivp� (10)
In order to determine whether a HDTV server can provide deterministic service guarantees to each of then subscribers, the values of lids and sivf , 8i 2 [1; n], in Equation (10) must be set to their respective maximum

values. However, this may be very pessimistic, since media block allocation policies and variable rate compression

techniques (such as, JPEG and MPEG) may yield lds and svf significantly smaller than their respective maximum

values. Consequently, the number of subscribers that can be serviced simultaneously can be increased by

considering the variations in lds and svf , and providing statistical service guarantees to each of the subscribers.

Specifically, if lids represents the random variable characterizing the separation between successive media blocks,

and if sivf represents the random variable characterizing the bursty bit size distribution of frames yielded by

compression techniques such as JPEG and MPEG, then the termnXi=1

ki�1Xj=1

 lids + �ivs � sivfRdr !
in Equation (10) denotes the sum of 2�Pni=1(ki�1) independent random variables, and can itself be represented

as a random variable (say �). Hence, Equation (10) reduces to:� � mini2[1;n] ki � �ivsRipl!� n � (lmaxseek + lmaxrot) (11)
Thus, if F� is the probability distribution function of �, then guaranteeing simultaneous continuous playback ofn HDTV video strands with a probability greater than � necessitates that:F� mini2[1;n] ki � �ivsRipl!� n � (lmaxseek + lmaxrot)! � � (12)

The HDTV server can service all the n requests simultaneously if and only if k1; k2; :::; kn can be determined

such that either Equation (10) (in the case of deterministic guarantees) or Equation (12) (in the case of statistical

guarantees) is satisfied. Since both of these formulations containnparameters and only one equation, determination

of the values of k1; k2; :::; kn require additional policies. The goal of all of such policies is to satisfy maximum

number of subscribers simultaneously.

www.manaraa.com

11

We will henceforth study deterministic servicing policies; extensions to statistical servicing can be carried

out fairly easily. To simplify the analysis, we assume that the variations in granularity can be absorbed into the

variation of recording rate, and therefore substitute �1vs = �2vs = � � � = �nvs = �vs in Equation (10), yielding:n � (lmaxseek + lmaxrot) + nXi=1

ki�1Xj=1

 lids + �vs � sivfRdr ! � mini2[1;n] ki � �vsRipl! (13)
The simplest policy for the choice of k1; k2; :::; kn is to use the same value for all of them, yielding what is

generally referred to as a round robin servicing algorithm. Formally, if k1 = k2 = � � � = kn = k, Equation (13)

reduces to n � (lmaxseek + lmaxrot) + n � (k � 1) � lavgds + �vs � savgvfRdr ! � k � mini2[1;n] �ivsRipl!) k � n � ��lmaxseek + lmaxrot �� �lavgds + �vs�savgvfRdr ��
mini2[1;n] � �vsRipl�� n � �lavgds + �vs�savgvfRdr �

Since any media block can be retrieved from disk within time (lmaxseek + lmaxrot) starting from any other location on

disk, it is guaranteed that
�lavgds + �ms�smuRdr � � (lmaxseek + lmaxrot). Hence, for k to be non-negative, the denominator

must be positive, yielding:

mini2[1;n] �vsRipl! > n � lavgds + �vs � savgvfRdr !
Rearranging the above equation, we obtain the maximum number of subscribers that can be serviced in a round

robin algorithm to be: ncmax = mini2[1;n] � �vsRipl��lavgds + �vs�savgvfRdr � (14)
Clearly, the number of subscribers that can be serviced by the round robin algorithm is limited by the request

with maximum playback rate. This certainly may not be the optimal number of subscribers, because, whereas

the subscriber with the maximum playback rate will have retrieved exactly the number of data blocks it needs

for the duration of a service round, other subscribers whose playback rates are smaller will have retrieved more

data blocks than they need in each service round. Consequently, by reducing the number of data blocks retrieved

per service round for such subscribers, it may be possible to accommodate more number of subscribers. We now

propose an algorithm that tries to allocate values to ki proportional to the playback rate of the strand requested by

subscriber i, and show that it supports the optimal number of subscribers (that is, it always yields values of ki so

as to satisfy Equation (13) whenever a solution exists for the given number of subscribers).

www.manaraa.com

12

3.1 Quality Proportional Multi-Subscriber Servicing

In the Quality Proportional Multi-subscriber Servicing (QPMS) algorithm, the number of blocks accessed during

each round for each subscriber request is proportional to its playback rate4. That is,8i 2 [1; n] : ki / Ripl
Let k be the proportionality constant, using which, we get, k1 = k � R1pl, k2 = k � R2pl, ..., kn = k � Rnpl. Under

these conditions, Equation (13) reduces to:n � (lmaxseek + lmaxrot) + k � nXi=1

Ripl � (lids + �vs � sivfRdr) � nXi=1

(lids + �vs � sivfRdr) � k � �vs (15)
In the above equation, lids denotes the scattering parameter, and, by Equation (1), it is inversely proportional

to the playback rate Ripl. Hence, using basic algebra5, it can be shown that:nXi=1

Ripl � (lids + �vs � sivfRdr) � n � Ravgpl � (lavgds + �vs � savgvfRdr)
If we define: � = lmaxseek + lmaxrot (16)� = Ravgpl � (lavgds + �vs � savgvfRdr) (17)
 = lavgds + �vs � savgvfRdr (18)� = �vs (19)
then Equation (15), which represents the requirement of HDTV retrieval rates of all the subscribers, reduces to:n � �+ k � n � � � n �
 � k � � (20)) k � n(��
)(��n�) if � > n�k � n(��
)(n���) if � < n�k = 1 if � = n� (21)

4This policy is the time analog of the scaled placement policy presented for spatial merging in Section 2, but as we will see shortly, the
algorithms to implement the policy are different and much more complex.

5Consider two number sequences A = faiji 2 [1; n]g and B = fbiji 2 [1; n]g. If the elements of A are sorted in the ascending order
(i.e., ai � aj if i > j), and the elements ofB are sorted in the descending order (i.e., bi � bj if i > j) , thennXi=1

ai � bi � n � ā � b̄
where ā = Pni=1

ain and b̄ = Pni=1
bin .

www.manaraa.com

13

δ/β

k

n

Space
Infeasible

Space
Feasible

Figure 5: Variation of the number of blocks (k) per service round with respect to the number of requests (n)

Figure 5 shows the variation of k with n. The value of k obtained from Equation (21) will be positive (and

hence, meaningful) if and only if � > n�, which yields the maximum number of simultaneous subscribers that

can be serviced to be: npmax � b �vsRavgpl � (lavgds + �vs�savgvfRdr)c (22)
For a HDTV video stream retrieved at 30 frames/s and frame size 0.5 Mbits/frame on a disk of transfer

bandwidth 1 Gbits/s, choosing �vs = 1 frame/block and lds = 1 ms yields npmax � 22. Hence, the configuration

proposed in Section 1 consisting of 120 such disks can support 2640 simultaneous subscriber requests, which is

more than the 1000 required to make the configuration economically viable.

Given a value of the number of subscribers n � npmax, Equation (21) can be used to determine k, from which,

the number of blocks of each subscriber retrieved during each service round can be obtained to be: k1 = k � R1pl,k2 = k � R2pl, ..., kn = k � Rnpl. Furthermore, the values of ki’s thus derived can determine bounds on the buffer

space requirement for continuous playback. Specifically, if the retrieval of a media strand is initiated from an

independently decodable frame (such as, an intra-coded frame (I) in a MPEG encoded video strand), then since ki
blocks are retrieved during each service round, the buffer space requirement for each subscriber can be bounded

by 2 � ki. However, initiating the playback starting from any other type of frame (such as, a predicted (P) or

an interpolated (B) frame in a MPEG encoded video strand) necessitates reading ahead all the frames essential

for its decoding, and hence, increases the buffer space requirement by at most the number of frames separating

successive independently decodable frames (which, in the case of MPEG, is equal to the number of predicted (P)

and interpolated (B) frames separating successive intra-coded (I) frames).

In the above analysis, we have assumed that a HDTV video strand is retrieved from disk in units of blocks,

each containing an integral number of frames (since �vs is assumed to be an integer). Since the size of a video

frame (namely, sivf) varies from frame to frame, the above formulation requires that media information be stored

and retrieved from disk in variable sized blocks. However, in the case of disks with fixed size blocks, a disk block

www.manaraa.com

14

may not contain an integral number of frames, and hence, disk block and frame boundaries may not coincide. In

such a scenario, the requirement for servicing n subscribers simultaneously can be formulated in terms of bit rate

requirement (instead of frame rate requirement, as in Equation (10)), and is given by:n � (lmaxseek + lmaxrot) + nXi=1

ki�1Xj=1

�lids + DRdr� � mini2[1;n]�ki �DRibr � (23)
where D is the size of the disk block, and 8i 2 [1; n], Ribr denotes the bit rate requirement of the ith subscriber.

Servicing optimal number of subscribers simultaneously requires that the number of blocks accessed during each

round for each subscriber request be proportional to that subscriber’s bit rate requirement. That is,8i 2 [1; n] : ki / Ribr
Thus, if k is the proportionality constant, then substituting k1 = k � R1br, k2 = k � R2br , ..., kn = k � Rnbr in

Equation (23), and repeating the analysis presented in this section, we can compute the number of blocks of each

subscriber retrieved during each service round.

3.2 Optimality of Quality Proportional Multi-Subscriber Servicing

The QPMS algorithm can support a much larger number of subscribers compared to the round robin algorithm.

The relative increase in the number of subscribers is given by:npmaxncmax = RmaxplRavgpl (24)
which can be significant if there is a large variation in the playback rates of the videos requested by subscribers.

In fact, the QPMS algorithm can be shown to be optimal, that is, it can support the largest possible number of

subscribers simultaneously:

Theorem 2 The QPMS algorithm supports the optimal number of subscribers simultaneously.

Proof : Without any loss of generality, let us assume thatR1pl � R2pl � � � � � Rnpl
where, R1pl = a2 � R2pl = a3 � R3pl = � � � = an � Rnpl
for the n strands requested by n subscribers.

In order to prove this theorem, we show that, given any number of subscribers n, if there is a set ofk01; k02; :::; k0n satisfying the HDTV retrieval rate equation (Equation (13)), then 9k1; k2; :::; kn that are

proportional to their respective playback rates, i.e.,k1 = a2k2 = � � � = ankn

www.manaraa.com

15

and which satisfy the same Equation (13). In such a case, k = ki�aiR1pl is guaranteed to satisfy the QPMS

equation (Equation (20)), and is, hence, a solution that will be found by the QPMS algorithm.

In order to obtain the values of k1; k2; :::; kn, the following procedure is used to increment the value of eachk0i, the end result of which is, 8i 2 [1; n] : ai � ki = maxj2[1;n](aj � k0j).
1. Let am1 � k0m1

= mini2[1;n]ai � k0i
and am2 � k0m2

= mini2[1;n] and i6=m ai � k0i
Incrementing the value of k0m1

to km1 such that am1 � km1 = am2 � k0m2
(i.e., setting km1 = am2 �k0m2am1

)

will make the number of blocks of HDTV strandsm1 and m2 proportional to their respective playback

rates. However, such an increase is permissible only if it does not cause the HDTV retrieval rate

equation (Equation (13)) to be violated. Since am1 � k0m1
= mini2[1;n] ai � k0i and Ripl = Rpl1ai ,

Equation (13) reduces to:n � (lmaxseek +lmaxrot) +Pni=1

Pk0i�1j=1 (lids + �vs�svfRdr) �
mini2[1;n](k0i � �vsRipl) = �vsR1pl �mini2[1;n](k01; a2 � k02; :::; an � k0n) = am1�k0m1

��vsR1pl (25)
Since Equation (1) guarantees thatlavgds + �vs � svfRdr � �vsRm1pl = am1 � �vsR1pl
incrementing k0m1

results in a greater increase in the RHS of Equation (25) than that in LHS. Hence,

the value of k0m1
can be safely increased to km1 . After the increase, the display durations of both m1

and m2 will be identical, yielding the RHS of Equation (25) as

mini2[1;n](k0i � �vsRipl) = am1 � km1 � �vsR1pl = am2 � k0m2
� �vsR1pl

If we setMprop to denote the set of media streams whose ki’s become proportional to their respective

playback rates, at this step, Mprop would become:Mprop = fm1;m2g
2. As long as there are requests that are not yet in Mprop, i.e., jMpropj < n, determine the next requestm not in Mprop, whose am � k0m is the minimum:am � k0m = mini2[1;n] and i62Mprop ai � k0i

and, increase the values of km1; km2; :::; of all the requests in Mprop such that:

www.manaraa.com

168mi 2Mprop : kmi = am � k0mami
Again, such an increase is permissible only if it does not cause the HDTV Equation (13) to be violated.

In order to show that it is indeed not violated, consider Equation (25) with the LHS terms belonging

to requests within and withoutMprop separated:n�(lmaxseek+lmaxrot)+ Xi2Mprop ki�1Xj=1

(lids+ �vs � svfRdr)+ Xi62Mprop k0i�1Xj=1

(lids+ �vs � svfRdr) � kmi � �vsRipl (26)
Hence, increasing the number of blocks of each of the subset of requests in Mprop by the same

proportion multiplies the RHS by a factor that exceeds 1, and only the second term of the LHS by that

same factor. Hence, the increase in the RHS is more than that in the LHS, and the inequality is still

maintained. Hence, the number of blocks of each of the subset of requests in Mprop can be safely

increased so as to equal in proportion to that of request m. After the increase, m is added to Mprop:Mprop = Mprop [fmg
If there are no more requests outsideMprop, that is, jMpropj = n, it implies that k1 = a2�k2 = ��� = an�kn,

and the procedure can be terminated.2
In the QPMS algorithm, the values of ki obtained from a chosen value of k may be non-integral. Truncating

or rounding off the real values so obtained may not guarantee that Equation (13) is satisfied, and hence may not

guarantee that the retrieval of each of the requests proceeds at HDTV rates. We now present techniques to go

from real values to integral values so as not to violate HDTV rate requirements.

3.3 QPMS with Integral Quanta

Display of HDTV strands proceeds in terms of quanta such as frames. Assuming each block to contain a display

quantum, if ki, the number of blocks retrieved for a request i in a service round, is not an integer, then retrieval of

a fraction of a block cannot be used for display, causing the display to starve until the remaining fraction arrives,

possibly in the next service round. Such scenarios can be avoided if the number of blocks fk1; k2; :::; kng retrieved

in a service round are all integers, techniques for deriving which we now elaborate, starting from the real values

yielded by the QPMS algorithm.

Let the values of fk1; k2; :::; kng yielded by the QPMS algorithm be:8i 2 [1; n] : ki = Ii + Fi

www.manaraa.com

17

where Ii and Fi are the integer and the fractional parts, respectively, of ki. If I =Pni=1 Ii and F =Pni=1 Fi, then(I + F) denotes the average number of blocks that need to be retrieved in each service round. In the technique

that we present, the number of blocks transferred for a strand Si during a service round toggles between the floor

and the ceiling of ki, so that on an average, the transfer rate for each request i is Ii+Fi blocks/round. Specifically,

for each round r, the HDTV server must determine the set Kj = fkr1 ; kr2; � � �krng of the sequence of number of

blocks of the n subscribers to be transferred during round r, where kri can equal either Ii or (Ii + 1). However, in

doing so, both the service time and buffer space constraints, that would have been met had the transfer rate beenIi + Fi strictly for every round, must continue to be satisfied:� HDTV rate constraint: The cumulative slack time at the HDTV server, which is the sum of the differences

between the RHS and the LHS of Equation (13) for each round, must be non-negative so as to ensure

that none of the subscribers are starved during a service round. Denoting the time to access a block by� = �vs�svfRdr , the inherent slack time (Sint) that would have been available in each round, if exactly ki blocks

of strand i were transferred, is given by the difference between RHS and LHS in the HDTV rate Equation

(13): Sint = mini2[1;n](�vs � svfRipl) � (n � (lmaxseek + lmaxrot) + nXi=1

ki�1Xj=1

(lds + �)) � 0

If, instead, the number of blocks transferred toggles between Ii and Ii + 1, the slack time during a round

can be higher or lower, respectively. The cumulative slack time St(R) available during the Rth round is

given by: St(R) = R � Sint + � � nXi=1

(R � ki � RXr=1

kri)
For HDTV rate constraint to be met, the cumulative slack time must never become negative, i.e., St(R) � 0.� Buffer space constraint: The slack buffer space at the HDTV server, which is the difference between the

available buffer space and the used buffer space, must be non-negative.

The transfer of Ii+1 instead of ki blocks during a service round can increase the buffer space requirements.

If the needed additional buffering is unavailable, the toggling up of number of blocks transferred from Ii
to Ii + 1 of one request must be matched by a toggling down from Ij + 1 to Ij of another request. IfSs = B� I is the slack buffer space available during each round, then the following buffer space constraint

must be met: nXi=1

(kri � Ii) � Ss
It can be shown that, the slack buffers Ss must at least equal dF e, yielding a value of at least (I + dF e) for

the total number of buffers B. If not, buffering may become insufficient to hold all the blocks transferred

during a service round. (This is because, since we do not make any assumptions about the order of requests

within a service round, the blocks transferred during one service round, which are I + F in number on an

average, are not assumed to be available for playback until the immediately following service round, and

need to be buffered until then).

www.manaraa.com

18

We now present an algorithm in which toggling of Ii to (Ii + 1) for requests are dynamically staggered so as

never to exceed available slack time and slack space in each service round.

During each round, either Ii or (Ii + 1) blocks of subscriber i are retrieved. During rounds in which Ii
blocks are retrieved, there must be sufficient accumulation of data to maintain continuity of HDTV display, and the

accumulation is resumed during rounds in which (Ii+ 1) blocks are retrieved. Furthermore, an initial prefetching

of blocks is also necessary to guarantee continuity during the first few rounds (since not all requests i can haveIi + 1 transferred during the first few rounds). The accumulation at the end of round R for subscriber i is the sum

of differences between kri and (Ii+Fi) during the r rounds plus the prefetched number of blocks Pi, and is given

by: Di(R) = Pi + RXr=1

(kri � (Ii + Fi)) (27)
Since every round consumes (Ii + Fi) blocks of request i on an average, during a round Ri, if Di(Ri) < Fi,
a shortage of blocks would occur during the next round; hence, round Ri is the deadline for accessing (Ii + 1)
blocks of request i. During each round, if there is sufficient slack time available to transfer extra blocks, requests

are ordered with earliest deadline round first, and (Ii + 1) blocks are transferred for each such request i until the

exhaustion of the slack time.

A schedule generated by the above algorithm will satisfy HDTV rate constraints if there is sufficient slack

time in the deadline round of each request to transfer its extra block. By Equation (27), the deadline round of

request i is related to Fi by: Pi + RiXj=1

(kji � (Ii + Fi)) < Fi
The deadline round will occur earliest if Ii (and not Ii+1) blocks have been transferred in all the previous rounds,

i.e., 8r 2 [1; Ri] : kri = Ii, in which case, the above equation becomes:Pi � Ri � Fi < Fi
yielding the equation for deadline round as: Ri = PiFi � 1 (28)
In order for sufficient slack time to be available during round Ri to transfer subscriber i’s extra block, the

accumulated slack time due to request i must exceed the time to transfer an extra block. In each round in whichIi is transferred, a slack time of Fi � � is accumulated towards request i, yielding an accumulated slack time ofRi � Fi � � in Ri rounds. If the HDTV rate constraint is to be met, then after retrieving an extra block of requesti, the net slack time should be non-negative. That is,Ri � Fi � � � � > 0) Ri > 1Fi

www.manaraa.com

19

Substituting for Ri from Equation 28, we obtain the condition for satisfiable deadline to be:PiFi � 1 > 1Fi) Pi > 1 + Fi (29)
In the deadline round, the accumulation Di decreases to Fi, but an extra block transferred restores Di to back to

at least (1 + Fi), and this cycle repeats. Since, Fi < 1, Pi � 2 is guaranteed to satisfy Equation (29), and hence,

a prefetch of two or more blocks of every request will guarantee the availability of sufficient slack time in the

deadline rounds of all requests, thereby meeting the HDTV rate constraint.

Since each round can potentially produce a slack time of � � F , the HDTV server can transfer the extra

blocks of at least bF c requests in the order of earliest occurring deadline first, and whenever sufficient slack time

accumulates, transfer the extra blocks of dF e requests. Such a policy allows the deadline requirements of the

maximum number of requests to be satisfied as much in advance as possible, while at the same time limiting the

maximum extra buffering needed during each round to dF e. Hence, the buffer space constraint is also met by the

algorithm. As pointed out earlier, (I + dF e) is the minimal buffer space requirement that cannot be avoided by

any implementation of the proportional policy.

3.4 Dynamic Admission of New Subscribers

While servicing an existing set of n subscribers, if a HDTV server receives a new (n + 1)th subscriber, it must

now decide whether to admit the new subscriber or not in the QPMS algorithm. If n + 1 � nmax derived from

Equation (22), the HDTV server can compute the new values of �, �,
, and � (see Section 3.1), and then computeknew (from Equation (21)) necessary for satisfying (n+ 1) subscribers.

If knew = kold (where, kold is the value of k using which the HDTV server has been servicing the existingn subscribers), then the HDTV server can immediately admit the (n+ 1)th subscriber. However, if knew 6= kold,

then knew > kold (see Figure 5), and the HDTV server has to begin transferring knewi = knew�Ripl blocks of each

of the earlier n requests, and of the new (n + 1)th request. During the first round that includes servicing of the(n+1)th subscriber, the number of blocks of subscriber i being transferred is knewi , whereas, the number of blocks

available for display are those of the previous round, which is koldi . Since it may be the case that knewi > koldi , for

each subscriber i, the time spent to transfer its knewi blocks will exceed the playback duration of its koldi blocks,

leading to a violation of its requirement of HDTV rate display. In other words, Equation (20) guarantees HDTV

retrieval rates are maintained only in steady state, and not during transitions.

In order to guarantee a smooth and transparent transition, we propose the following modification to Equation

(20). Suppose the HDTV server makes a transition from koldi to knewi in steps of 1 before beginning to service the(n + 1)th request. When it performs a transition from koldi to (koldi + 1), the time to transfer (koldi + 1) blocks

must not exceed the minimum playback duration of koldi blocks. Thus, if we use the time to transfer (ki + 1)
blocks instead of ki in the left hand side of Equation (13) but use ki in the right hand side, and then solve for ki, a

www.manaraa.com

20

transparent transition from koldi to (koldi + 1) is guaranteed. Specifically, this substitution changes Equation (20)

to n � �+ n � k � � � k � � (30)
Furthermore, since � � n�, n�+ nk� � k�) n�+ n(k + 1)� � (k + 1)�
Hence, for all i 2 [1; n], a transition from koldi + 1 to koldi + 2, koldi + 2 to koldi + 3, ..., knewi � 1 to knewi are

also automatically guaranteed. Thus, using Equation (30) (instead of Equation (21)) to determine k (from which,

the values of k1; k2; :::; kn can be obtained using ki = k � Ripl), and increasing it in steps of 1, yields a QPMS

algorithm that guarantees both transient and steady state maintenance of HDTV retrieval rates.

4 Experience and Performance Evaluation

So far, we have presented algorithms and techniques for collocational storage of maximum number of HDTV

videos on disk, and simultaneous servicing of maximum number of subscribers’ requests. In order to experi-

mentally evaluate their performance, we are implementing a prototype HDTV server at the UCSD Multimedia

Laboratory. We have carried out preliminary performance simulations of merging and QPMS algorithms assuming

a configuration consisting of an array of 120 disks, each with a data transfer bandwidth of 1 Gbits/s at the HDTV

server. For our simulations, the HDTV data rate is assumed to be about 15 Mbits/s at a frame rate of 30 frames/s,

which is what is yielded by terrestrial HDTV broadcasting systems such as, DigiCipher, DCS-HDTV, ADTV,

and ATVA-P [3]. The granularity of storage (i.e., �vs) is fixed at 1 frame/disk block. At a recording rate of 30

frames/s, the bound on the scattering parameter (lds) as evaluated by using Equation (1) comes out to be 16.66 ms.

Therefore, the storage pattern (M;G) of a HDTV strand is given by (0.5 Mb, 16.66 Mb). Under these constraints,

when the strands are stored independently (i.e., without merging), then the average storage efficiency is found to

be about 3%. On the contrary, both on-line and off-line merging techniques yield a storage efficiency of about

95%, thereby providing an evidence of the significant improvements in storage utilization that can be expected

due to merging.

Within this environment, assuming various compression models, we have evaluated the relative performance

of policies that provide deterministic and statistical service guarantees for servicing multiple subscribers simul-

taneously. In order to perform this analysis, we characterized compression models by specifying: (1) the types

of frames (and their respective sizes) generated by the compression technique, and (2) the relative frequency of

occurrence for each type of frame. For instance, still picture compression techniques, such as JPEG, do not exploit

the temporal redundancy present in motion video, and yield only one type of frames (namely, intra-coded frames).

In contrast, MPEG, which achieves significant bit rate reduction by motion-compensated interpolation, yields

three different types of frames, namely, intra-coded (I), predicted (P), and bidirectional interpolated (B) frames,

each with a different relative frequency. Our analysis demonstrates that applying QPMS policy for providing

statistical service guarantees to HDTV video streams encoded using JPEG or MPEG compression techniques

www.manaraa.com

21

0

10

20

30

40

50

60

70

M
ax

im
u

m
 o

f
n

u
m

b
er

 o
f

si
m

u
lt

an
eo

u
s

su
b

sc
ri

b
er

s

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

k

Deterministic servicing
Statistical servicing (JPEG)
Statistical servicing (MPEG)

Figure 6: Variation in k with respect to the number of simultaneous subscribers (n) for providing deterministic or
statistical service guarantee

www.manaraa.com

22

yields smaller values of k (and hence, impose smaller buffer space requirement), and can service a larger number

of subscribers simultaneously, as compared to its deterministic counterpart (see Figure 6).

Figure 7 shows the maximum number of simultaneous subscribers that can be supported (at various scattering

parameters) by such a HDTV server using the QPMS algorithm. As expected, the number of subscribers increases

with the decrease in the playback rate. The maximum number of subscribers reaches a highest value of 8000 for

the QPMS algorithm, which is two orders of magnitude greater than 120 subscribers supported by straightforward

multiplexing techniques such as one subscriber per disk head, thereby demonstrating the immense scalability of

the QPMS algorithm.

Figure 8 illustrates that the gain in the maximum number of simultaneous subscribers in the QPMS as

compared to the round-robin algorithm. Higher the asymmetry among the playback rates of the subscribers,

greater is the advantage of employing the QPMS algorithm.

0

1000

2000

3000

4000

5000

6000

7000

8000

M
ax

im
u

m
 o

f
n

u
m

b
er

 o
f

si
m

u
lt

an
eo

u
s

su
b

sc
ri

b
er

s

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Scattering paremeter (in terms separation in Mbits)

60 frames/sec
45 frames/sec
30 frames/sec

Figure 7: Variation of the maximum number of simultaneous subscribers with the scattering parameter, at various
playback rates, in the QPMS algorithm

5 Relation to Previous Work

In the recent past, many research projects have investigated storage systems for still images and/or audio [1, 7].

Work by Mackay and Davenport [5], and Rangan and Swinehart [8] support video filing, but video is stored in an

analog form on consumer electronic devices. The Matsushita’s Real Time Storage System [6] has investigated some

of the low level storage mechanisms for digital video. Anderson et al. [2], and Gammell and Christodoulakis [4]

have described file system designs for supporting multiple audio channel playback, and have proposed techniques

for providing hard performance guarantees. A model for the design of a file system for storing real-time video and

audio streams individually on magnetic disks have been presented by Rangan and Vin [9]. A qualitative proposal

www.manaraa.com

23

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

G
ai

n
 in

 t
h

e
m

ax
im

u
m

 n
u

m
b

er
 o

f
si

m
u

lt
an

eo
u

s
su

b
sc

ri
b

er
s

0 10 20 30 40 50 60 70 80 90 100

Percentage of 30 frames/s requests in a pool of 30 frames/s and 60 frames/s requests

Figure 8: Increase in the maximum number of simultaneous subscribers in QPMS as compared to the round-robin
algorithm

for a video-on-demand service is presented by Sincoskie in [11]. However, a quantitative study and optimizing

algorithms for designing multi-user HDTV storage servers have not received much attention.

6 Concluding Remarks

We have presented techniques for designingHDTV-on-demand server that can satisfy a large number of subscribers

simultaneously. Using a model that relates disk and device characteristics to the HDTV playback rate, storage

patterns for HDTV video streams are obtained, and multiple streams each with its own storage pattern are

merged so as to utilize disk space efficiently. We have proposed both an optimal off-line merging algorithm

suitable for archival storage, and an on-line merging algorithm suitable for intermediate cache storage. In order to

service multiple subscribers simultaneously, we have developed a Quality Proportional Multi-subscriber Servicing

(QPMS) algorithm that retrieves video frames at a rate proportional on an average to the HDTV playback rates

of requests. The algorithm uses a staggered toggling technique by which successive numbers of frames retrieved

are fine tuned individually to achieve the servicing of an optimal number of subscribers simultaneously, without

violating the HDTV rate requirements of any of the subscriber. The QPMS algorithm is also powerful enough

to accommodate bounded availability of HDTV display buffers, and permits dynamic additions and deletions of

subscriber requests in a transparent manner (i.e., without causing discontinuity in the retrieval of any of the existing

subscribers). Its performance indicates that it is two orders of magnitude scalable compared to straightforward

techniques such as servicing one subscriber per disk head and round robin servicing of subscribers.

In summary, our studies provide a quantitative demonstration of the technological feasibility and economic

viability of HDTV-on-demand servers (that provide services similar to those of neighborhood videotape rental

stores) on metropolitan area networks.

www.manaraa.com

24

REFERENCES

[1] C. Abbott. Efficient Editing of Digital Sound on Disk. Journal of Audio Engineering, 32(6):394–402, June
1984.

[2] D. Anderson, Y. Osawa, and R. Govindan. A File System for Continuous Media. ACM Transactions on
Computer Systems, 10(4):311–337, November 1992.

[3] G. Y. Beakley. Channel Coding for Digital HDTV Terrestrial Broadcasting. IEEE Transaction on Broad-
casting, 37(4):137–140, December 1991.

[4] J. Gemmell and S. Christodoulakis. Principles of Delay Sensitive Multimedia Data Storage and Retrieval.
ACM Transactions on Information Systems, 10(1):51–90, 1992.

[5] W. E. Mackay and G. Davenport. Virtual Video Editing in Interactive Multimedia Applications. Communi-
cations of the ACM, 32(7):802–810, July 1989.

[6] Y. Mori. Multimedia Real-Time File System. Technical report, Matshushita Electric Industrial Co., February
1990.

[7] B.C. Ooi, A.D. Narasimhalu, K.Y. Wang, and I.F. Chang. Design of a Multi-Media File Server using Optical
Disks for Office Applications. IEEE Computer Society Office Automation Symposium, Gaithersburg, MD,
pages 157–163, April 1987.

[8] P. Venkat Rangan and D. C. Swinehart. Software Architecture for Integration of Video Services in the
Etherphone Environment. IEEE Journal on Selected Areas in Communication, 9(9):1395–1404, December
1991.

[9] P. Venkat Rangan and Harrick M. Vin. Designing File Systems for Digital Video and Audio. In Proceedings
of the 13th Symposium on Operating Systems Principles (SOSP’91), Operating Systems Review, Vol. 25, No.
5, pages 81–94, October 1991.

[10] P. Venkat Rangan, Harrick M. Vin, and Srinivas Ramanathan. Designing an On-Demand Multimedia Service.
IEEE Communications Magazine, 30(7):56–65, July 1992.

[11] W. D. Sincoskie. System Architecture for a Large Scale Video on Demand Service. Computer Networks and
ISDN Systems, North-Holland, 22:155–162, 1991.

